MathVantage	Algebra	II - Exam 2	Exam Number: 041		
	PART 1:	QUESTIONS			
Name:	Age	: Id:	Course:		
Algebra II - Exa	m 2	Lesson: 4-6			
Instructions:		Exam Strategies to get the best performance:			
Please begin by printing your Name, yo	ur Age,	• Spend 5 minutes reading your exam. Use this time			
your Student Id, and your Course Name	e in the box	to classify each Question in (E) Easy, (M) Medium,			
above and in the box on the solution she	eet.	and (D) Difficult.			
• You have 90 minutes (class period) for t	his exam.	• Be confident by solv	ing the easy questions first		
		then the medium que	estions.		
• You can not use any calculator, compute	er,				
cellphone, or other assistance device on	this exam.	• Be sure to check each solution. In average, you			
However, you can set our flag to ask per	rmission to	only need 30 second	s to test it. (Use good sense).		
consult your own one two-sided-sheet n	otes at any				
point during the exam (You can write co	oncepts,	• Don't waste too muc	h time on a question even if		

• Don't waste too much time on a question even if you know how to solve it. Instead, skip the question and put a circle around the problem number to work on it later. In average, the easy and medium questions take up half of the exam time.

Solving the all of the easy and medium question will already guarantee a minimum grade. Now, you are much more confident and motivated to solve the difficult or skipped questions.

• Be patient and try not to leave the exam early. Use the remaining time to double check your solutions.

• Set up your flag if you have a question.

are not allowed in your notes).

some points).

formulas, properties, and procedures, but questions

and their solutions from books or previous exams

• Each multiple-choice question is worth 5 points

and each extra essay-question is worth from 0 to 5

points. (Even a simple related formula can worth

• Relax and use strategies to improve your performance.

1. A quadratic function is:

- I. $xy = c, c \neq 0$
- II. $y = a(x x_1)(x x_2)$, where $a \neq 0$ and x_1, x_2 are the roots.

III.
$$y = ax^2 + bx + c, a \neq 0$$

- a) Only I is correct.
- b) Only II is correct.
- c) Only III is correct.
- d) I, II, and III are correct.
- e) None of the above.

2. If x_1 and x_2 are the roots of a quadratic function $y = ax^2 + bx + c$, $a \neq 0$ then:

I.
$$x_1 \cdot x_2 = \frac{c}{a}$$

II. $x_1 + x_2 = \frac{b}{a}$

$$a = \frac{1}{a}$$

III.
$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$
where $\Delta = b^2 + 4ac$.

- a) Only I is correct.
- b) Only III is correct.
- c) Only III is correct.
- d) I, II, and III are correct.
- e) None of the above.

3. Given the graph of the quadratic function $y = ax^2 + bx + c$, $a \neq 0$ such that x_1 and x_2 are its roots:

Then:

a) a > 0 and $\Delta > 0$ b) a > 0 and $\Delta = 0$ c) a > 0 and $\Delta < 0$ d) a < 0 and $\Delta > 0$ e) a < 0 and $\Delta = 0$. 4. Let $y = ax^2 + bx + c$, $a \neq 0$ be a quadratic function with vertex $V(x_v, y_v)$.

I.
$$x_v = \frac{x_1 + x_2}{2}$$
 and $y_v = a(x_v^2) + b(x_v) + c$, where x_1
and x_2 are the roots.

II.
$$x_v = \frac{-b}{2a}$$
 and $y_v = \frac{\Delta}{4a}$

III.
$$x_v = \frac{-b}{2a}$$
 and $y_v = \frac{-\Delta}{4a}$

- a) Only I is correct.
- b) Only II is correct.
- c) Only III is correct.
- d) Only I and II are correct.
- e) None of the above.
- 5. The value of *m* such that the quadratic function $y = x^2 - 4x + m$ has two distinct roots is:
- a) *m* < 4
- b) *m* < 5
- c) *m* < 8
- d) *m* < 16
- e) None of the above.
- 6. The quadratic function of the following graph is:

- a) $y = x^2 6x + 8$ b) $y = x^2 4$ c) $y = -x^2 + 2x + 3$ d) $y = x^2 x 12$
- e) None of the above.

7. Find the minimum value of the following quadratic function:

$$y = x^2 - 6x + 8$$

a) -1 b) 0 c) 1 d) 2 e) None of the Above.

8. The perimeter of a rectangle is 24 ft. The maximum area of the rectangle is:

- a) 4 ft^2
- b) $16 \, \text{ft}^2$
- c) $36 \, \text{ft}^2$
- d) 625 ft^2
- e) None of the above.

9. Find the formula for the revenue function if the pricedemand function of a product is p = 100 - 2x, where x is the number of items sold and the price is in dollars. How many items should be sold in order to maximize the revenue? What is the maximum revenue?

- a) 2 items and \$40
- b) 4 items and \$32
- c) 9 items and \$243
- d) 20 items and \$800
- e) None of the above.

10. Given:

I. If p(c) = 0 then *c* is the zero or root of p(x).

II. A polynomial function is any function in the form:

 $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0; a_n \neq 0.$

III. When the polynomial p(x) is divided by x - a, the remainder is p(a).

Then:

- a) I, II, and III are incorrect.
- b) I, II, and III are correct.
- c) Only I and II are correct.
- d) Only II and III are correct.
- e) None of the above.

11. Given:

I.
$$p(x) = 2x^5 + 3x - 2$$

II. $p(x) = x^{16} - x^{-1}$
III. $p(x) = -x + 1$

Then:

- a) Only I and II are polynomials.
- b) Only I and III are polynomials.
- c) Only II and III are polynomials.
- d) I, II, and III are polynomials.
- e) None of the above.

- 12. Given $p(x) = -x^2 + x$ and d(x) = x + 1, then:
- I. $p(x) d(x) = -x^2 1$
- II. $p(x) \cdot d(x) = -x^3 + x$
- III. In the division $\frac{p(x)}{d(x)}$, the quotient is q(x) = -x + 2and the remainder is r(x) = 2.
- a) Only II and III are correct.
- b) Only I and III are correct.
- c) Only I and II are correct.
- d) I, II, and III are correct.
- e) None of the above.

13. The remainder of $p(x) = -x^3 - x^2 + 3$ by

d(x) = -x - 1 is:

a) -1 b) 2 c) 3 d) 4 e) None of the above.

14. Let x_1, x_2 , and x_3 be the roots of

 $p(x) = x^3 - 6x^2 + 11x - 6.$

Given
$$x_1 = 1$$
 then $k = (x_2)^2 + (x_3)^2$ is:

a) k = 5

- b) k = 10
- c) k = 13
- d) k = 25
- e) None of the above.

15. Let q(x) and r(x) be the quotient and remainder by the division of $p(x) = x^3 - 1$ by $d(x) = x^2 - 2$. Then q(x) + r(x) is:

- a) 2x 1
- b) $x^2 1$
- c) $-x^2 + 1$

d) $x^2 - x + 1$

e) None of the above.

16. Let $g : A \to B$ and $f : A \to B$ be functions. The composition of function fog(x) = f[g(x)] exists if:

Notation: *Im* : Image and *D* : Domain.

- a) $Im_g = Im_f$
- b) $D_g = D_f$
- c) $Im_f = D_g$
- d) $Im_g = D_f$
- e) None of the above.

17. Given $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that f(x) = 6x + 4 and g(x) = 3x - 1.

Then f[g(1)] is:

a) $1 \quad b$) $3 \quad c$) $14 \quad d$) $16 \quad e$) None of the above.

18. Given $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that f(x) = 5x - 1 and f[g(x)] = 2 - 3x. Then:

a) $g(x) = \frac{x}{2} + 1$ b) g(x) = 2x - 8c) $g(x) = \frac{3x}{4} + \frac{3}{4}$

d)
$$g(x) = -\frac{43x}{5} + \frac{3}{5}$$

e) None of the above.

19. Given $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that f(x) = x + 2 and g[f(x)] = x - 2. Then:

- a) g(x) = 2x + 7
- b) g(x) = -3x + 2
- c) g(x) = -2x + 13
- d) g(x) = x 4
- e) None of the above.

20. If $g(x) = \sqrt[9]{x-3}$ and $h(x) = x^9 + 1$. Then: a) h[g(x)] = xb) h[g(x)] = x + 5c) h[g(x)] = x - 1

- d) h[g(x)] = x 2
- e) None of the above.

MathVantage				Algebra II - Ez	kam 2	Exam Number: 041			
-						PA	ART 2: SOLUT	IONS	Consultin
ame:_							Age:	Id:	Course:
	Mul	tiple-	-Cho	oice Ai	nswe	rs		Extra	Questions
1	Questions	Α	в	с	D	Е	<u>م</u>	Graph y = y	$r^2 - 4r$
	1					\vdash	۷.	1. Orapii y – x	A = TA
	2								
	3								
	4								
	5								
	6								
	7								
[8								
	9								
	10								
[11								
	12								
[13								
	14						21	Calculate <i>m</i>	such that the quadratic function
	15						y	$= 4x^2 + 4x + $	+ m^2 has two distinct real roots:
	16								
[17								
	18								
	19								
l	20								
	Let th	is sec	tion	in bla	ınk				
ſ				Points	N	Max]		
	Multiple Choice			100					
[Extra Points Consulting					25			
						10			

Age Points

Total Performance

Grade

25

160

Α

23. Given the equation 3x + y = 36, find x and y such that the product P = xy be a maximum.

25. Show me that Derivatives are easy. Let f(x) be a polynomial such that $f(x) = x^n$. Then the derivative of f(x) called f'(x) is $f'(x) = n x^{n-1}$. Find the derivative of $f(x) = x^7$.

24. Given
$$f(x) = \frac{8-x}{\sqrt[3]{x-8}}$$
. Find the domain of $f(x)$.